If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.2x^2-100x-2500=0
a = -0.2; b = -100; c = -2500;
Δ = b2-4ac
Δ = -1002-4·(-0.2)·(-2500)
Δ = 8000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8000}=\sqrt{1600*5}=\sqrt{1600}*\sqrt{5}=40\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-40\sqrt{5}}{2*-0.2}=\frac{100-40\sqrt{5}}{-0.4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+40\sqrt{5}}{2*-0.2}=\frac{100+40\sqrt{5}}{-0.4} $
| 1=0.33^x | | 90x=-0.2x^2-10x-2500 | | 2=2.5^x | | 11=60-x | | 19=62-x | | 19=22-x | | 11=x^2+4x-1 | | 11=40-x | | 16=67-x | | 3v2-60=0 | | 18=28-x | | B+p=90 | | 10=68-x | | 16=35-x | | 23=-4a+1 | | 150-5x=130+3x | | -23=-4a-1 | | .75t-(5/6)=(2/3)t | | 54-8x=48-2x | | -130+5x=150+3x | | 5x=3x-150 | | 11000=x+(x*0.05) | | 0.4=x+0.2-0.2x | | -6(8-2n)-2n=5(n+4)-8 | | 6^x+2=36^5 | | v+19=86 | | (15x+330)(-0.25x+6)=0 | | -3x-18=8 | | 9x-4=5x+7+2x+3 | | x+1000=1.07X | | d×7=35 | | 129/212=x159 |